Nonnegative group-monotone matrices and the minus partial order
نویسندگان
چکیده
منابع مشابه
Minus Partial Order in Rickart Rings
The minus partial order is already known for complex matrices and bounded linear operators on Hilbert spaces. We extend this notion to Rickart rings, and thus we generalize some well-known results.
متن کاملOn the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملNonnegative Matrices
For a loopless, acyclic, transitive directed graph S, we study the relations between the predecessor property and the well structured property on S. These properties assure the existence of nonnegativ€ Jordan bases for any nonnegative matrix with singular graph S.
متن کاملSpace Decomposition and Partial Order on Matrices ∗
Motivated by the observation that there exists one-to-one correspondence between column space decompositions and row space decompositions of a matrix, the class of matrices dominated by this matrix under ‘≤’ is characterized in terms of characteristic of column space decompositions, where ≤ is a matrix partial order such as the star partial order, the sharp partial order, and the core partial o...
متن کاملEla Decomposition of a Ring Induced by minus Partial Order
The minus partial order linear algebraic methods have proven to be useful in the study of complex matrices. This paper extends study of minus partial orders to general rings. It is shown that the condition a < b, where < is the minus partial order, defines two triples of orthogonal idempotents, and thus, a decomposition of a ring into a direct sum of abelian groups. Hence, several well-known re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2009
ISSN: 0024-3795
DOI: 10.1016/j.laa.2008.07.011